
Real Analysis

Qualifying Examination

Fall 2016

NAME: I.D. # :

Complete five (5) of the problems below. If you attempt more than 5

questions, then please clearly indicate which 5 should be graded on this

sheet.
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1a. Consider the following statement: Let (X,B, µ) be a measure space and let {fn}
be a sequence in L1(µ) that converges uniformly on X to a function f ∈ L1(µ) ;

then

lim
n→∞

∫
X

fn dµ =

∫
X

f dµ

If the above statement is true prove it. If the above statement is false, (i) show by

example and (ii) add a hypothesis to the above statement that the results is a true

statement, and give a proof that your modified statement is indeed true.

Let (X,B, µ) be a measure space.

1b. State the following theorems.

(i) Monotone Convergence Theroem

(ii) Fatou’s Lemma

(iii) Dominated Convergence Thereom

1c. Prove that (ii) implies (iii).

2a. Let f be an increasing real-valued function on [a, b] , and

Eu,v = {x : D+f(x) > u > v > D−f(x)},

where u and v are rational numbers,

D+f(x) = lim
h→0+

f(x+ h)− f(x)

h
and D−f(x) = lim

h→0+

f(x)− f(x− h)

h

Prove that the outer measure m∗(Eu,v) = 0 .

2b. Let f be an increasing, real-valued, differentiable a.e. on [a, b] and the deriva-

tive f ′ is measurable. prove that∫ b

a

f ′(x) dx ≤ f(b)− f(a) .

3a. State Ascoli-Arzelá Theorem
(
on a metric space (X, d)

)
3b. Let fn : R → R be differentiable functions, n = 1, 2, . . . , with fn(0) = 0 and

|f ′(0)| ≤ 3 for all n, x . Suppose

lim
n→∞

fn(x) = g(x)

for all x . Prove that g : R→ R is continuous.

(Hint: Use the mean value theorem and Ascoli-Arzelá theorem)

4a. Let f be a real-valued twice differentiable function on an open interval (a, b) .

Prove that f is convex if and only if f ′′ ≥ 0.
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4b. Let {αn} be a sequence of nonnegative numbers whose sum is 1 and {ξn} be a

sequence of positive numbers. Then

∞∏
n=1

ξαn
n ≤

∞∑
n=1

αnξn .

5a. Define an n-dimensional differentiable manifold.

5b. State the inverse function theorem on differentiable manifolds.

6a. State Orthogonal Projection Theorem in Hilbert Space.

6b. Let M be a subspace of a a Hilbert space V . Let x be in V Prove that if y

is in the subspace M , then (x − y) ⊥ M if and only if y is the unique point in M

closest to x, that is, y is the “best approximation” to x in M

6c. Prove Riesz Representation Theorem in Hilbert Space (not necessarily separable

) by using Orthogonal Projection Theorem.

Let H be a Hilbert space with the inner product 〈 , 〉 and T be a linear operator

on H .
6d. Prove that for every linear operator T onH there exists a unique linear operator

T ∗ on H such that

〈Tα, β〉 = 〈α, T ∗β〉

for every α and β in H . (We call such T ∗ an adjoint of T .)

Let H1,H2 and H3 be Hilbert spaces. We write ‖ ‖ to denote the norm on each

of these spaces. Consider linear operators T : H1 → H2 and S : H2 → H3 such

that ST = 0 . Let Sα = 0 . Consider the operator L = TT ∗ + S∗S : H2 → H2

7a. Suppose for some positive constant C ,

‖f‖2 ≤ C(‖T ∗f‖2) + ‖Sf‖2)

for every f in the intersection of the domain of T ∗ with the domain of S . Prove

that L is invertible, i.e. L has an inverse L−1.

7b. With the same assumption and notation as in 7a, we write G = L−1 . Then we

have the Hodge decomposition

α = TT ∗Gα+ S∗SGα .

(We call such G Green’s operator.)

If we assume in 7b , Sα = 0, then it follows that SGα = 0 . If we put u = T ∗Gα,

7c. Prove that u is the unique solution to

Tu = α .
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Recall that a real-valued function f on [0, 1] is said to be Hölder continuous of order

α if there exists a constant C such that

|f(x)− f(y)| ≤ C|x− y|α

for every x, y ∈ [0, 1] . Define

‖f‖α = max

∣∣∣∣f(x) + sup
|f(x)− f(y)|
|x− y|α

∣∣∣∣
8. Prove that for 0 < α ≤ 1 , the set of functions with ‖f‖α ≤ 1 is a compact

subset of the space C[0, 1] of real-valued continuous functions on [0, 1] .

9a. State Hahn-Banach Theorem

9b. Use 9a to prove that Reisz Representation Theorem does not hold for Banach

space L∞[0, 1] , or the dual space of L∞[0, 1] is not L1[0, 1] .

10a. State Radon-Nikodym Theorem

10b. Let µ, ν , and λ be σ-finite. Show that if ν << µ << λ , then their Radon-

Nikodym derivatives satisfy [
dν

dλ

]
=

[
dν

dµ

][
dµ

dλ

]
where ν << µ denote ν is absolutely continuous with respect to µ .

11a. State the Fubini theorem.

11b. Let X = Y = [0, 1] , µ = Lebegue measure on [0, 1] , λ = counting measure on

Y . Let

f(x) =

1 if x = y

0 otherwise

Does the Fubini theorem hold in this case? Justify your answer?

12a. Prove that the Lebesque measure of the Cantor set is zero.

For any set S ⊂ R , we write |S| for the diameter of S:

|S| := sup{|x− y| : x, y ∈ S} .

If |S| <∞ and α > 0 we define the α-covered length of S as

Hα(S) = inf

{ ∞∑
n=1

|Cn|α : S ⊆
∞⋃
n=1

Cn where Cn ⊂ R
}

The Hausdorff dimension of S is defined as

dimH(S) = inf{α > 0 : Hα(S) = 0}
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12b. Prove that the Hausdorff dimension of the Cantor set is log 2
log 3
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